Tag Archives: planetary gear box

China supplier CZPT S Series Helical Worm Hollow Shaft Gear Box with Motor planetary gearbox

Product Description

S helical worm gearbox motor/ reducer motor

S series is 1 kind of Helical worm gearbox ,designed as Modularization and high-stainless cast iron case . It is combination of helical gear and worm gear ,which with higher efficiency and strength than simple aluminum worm gearbox . Due to their outstanding efficiency, these drives can be used in every industrial sector and tailored to individual torque and speed requirements. The gear ratios afforded by the helical-worm gear stage and the low noise levels during operation make these gear motor  ideal low-cost solutions for simple applications 

GPHQ S worm reducer motor materials 

housing material: HT2OO high-strength cast iron
Gear material: 20CrMnTi
Surface hardness of gear HRC58°-62°
Gear core hardness HRC33°-40°
Input/Output shaft material 40Cr
Input/Output shaft hardness HBS241°-286°
Shaft at oil seal position hardness HRC48 ° -55 °
Machining precision of gears material Accurate grinding 6-5 grade
Efficiency up to 98%
Noise(Max) 60-68dB
Temp.rise: 40°C
Vibration ≤20um
Motor IP54, F class ,B5 FLANGE 
color : blue  (if you need big quantity ,we can done as your wanted color )

 Our  reduction geared motor Advantage

1,reasonable price with excellent quality 
2,delivery in time 
3,safe ,reliable ,economical and durable 
4,stable transmission ,quiet operation 
5,smooth running and low noise 
6,nice appearance ,durable service life 
7,high heat-radiating efficiency ,high carrying ability 
8,each gearbox must be tested before packing
9.reply in high efficiency during 1 working day 
10. professional to produce gearbox and electric motor .

If there is any question, please don’t hesitate to contact with me (EVA), U can send us your inquiry. And you will get response in 1 working day.
 
GEARBOX CATALOGUE :
CERTIFICATION  : 

PRODUCING PROCESS:

PACKAGE : 

for 1 container, directly loading ,for less, all goods with pallet.

FAQ
1, Q:what\’s your MOQ for ac gearbox motor  ?
A: 1pc is ok for each type electric gear box  motor 

2, Q: What about your warranty for your induction speed reducer motor ?
A: 1 year ,but except man-made destroyed

3, Q: which payment way you can accept ?
A: TT, western union .

4, Q: how about your payment way ?
A: 100%payment in advanced less $5000 ,30% payment in advanced payment , 70% payment before sending over $5000.

5, Q: how about your packing of speed reduction motor  ?
A: plywood case ,if size is small  ,we will pack with pallet for less 1 container 

6, Q: What information should be given, if I buy electric helical geared motor  from you ?
A: rated power,  ratio or output speed,type ,voltage , mounting way , quantity , if more is better .

Application: Motor, Machinery, Agricultural Machinery
Layout: Bevel
Hardness: Hardened Tooth Surface
Installation: Horizontal Type
Step: Double-Step
Surface Hardness of Gear: HRC58°-62°
Customization:
Available

|

Customized Request

worm gearbox

How to Install and Align a Worm Reducer Properly

Proper installation and alignment of a worm reducer are crucial for ensuring optimal performance and longevity. Follow these steps to install and align a worm reducer:

  1. Preparation: Gather all the necessary tools, equipment, and safety gear before starting the installation process.
  2. Positioning: Place the worm reducer in the desired location, ensuring that it is securely mounted to a stable surface. Use appropriate fasteners and mounting brackets as needed.
  3. Shaft Alignment: Check the alignment of the input and output shafts. Use precision measurement tools to ensure that the shafts are parallel and in line with each other.
  4. Base Plate Alignment: Align the base plate of the reducer with the foundation or mounting surface. Ensure that the base plate is level and properly aligned before securing it in place.
  5. Bolt Tightening: Gradually and evenly tighten the mounting bolts to the manufacturer’s specifications. This helps ensure proper contact between the reducer and the mounting surface.
  6. Check for Clearance: Verify that there is enough clearance for any rotating components or parts that may move during operation. Avoid any interference that could cause damage or performance issues.
  7. Lubrication: Apply the recommended lubricant to the worm reducer according to the manufacturer’s guidelines. Proper lubrication is essential for smooth operation and reducing friction.
  8. Alignment Testing: After installation, run the worm reducer briefly without a load to check for any unusual noises, vibrations, or misalignment issues.
  9. Load Testing: Gradually introduce the intended load to the worm reducer and monitor its performance. Ensure that the reducer operates smoothly and efficiently under the load conditions.

It’s important to refer to the manufacturer’s installation guidelines and specifications for your specific worm reducer model. Proper installation and alignment will contribute to the gearbox’s reliability, efficiency, and overall functionality.

worm gearbox

Does a Worm Reducer Require Frequent Maintenance?

Worm reducers generally require less frequent maintenance compared to some other types of gearboxes due to their design and operating characteristics. However, maintenance is still essential to ensure optimal performance and longevity. Here are some key points to consider:

  • Lubrication: Proper lubrication is crucial for worm gearboxes. Regularly check the lubricant level and quality to prevent wear and overheating. Lubricant should be changed as recommended by the manufacturer.
  • Inspections: Periodically inspect the gearbox for signs of wear, damage, or oil leaks. Check for any unusual noises, vibrations, or changes in performance that could indicate a problem.
  • Tightening and Alignment: Check and tighten any loose fasteners and ensure that the gearbox is properly aligned. Misalignment can lead to increased wear and reduced efficiency.
  • Seal Maintenance: Inspect and maintain seals to prevent oil leakage and contaminants from entering the gearbox.
  • Cleaning: Keep the gearbox clean from debris and contaminants that could affect its performance. Regular cleaning can prevent premature wear and damage.
  • Load and Speed: Ensure that the gearbox is operating within its rated load and speed limits. Exceeding these limits can lead to accelerated wear and potential failure.
  • Environmental Conditions: Consider the operating environment of the gearbox. Extreme temperatures, humidity, and other factors can impact the gearbox’s performance and longevity.

While worm gearboxes are known for their durability and self-locking feature, neglecting maintenance can lead to premature wear, reduced efficiency, and potential breakdowns. Following the manufacturer’s recommendations for maintenance intervals and procedures is essential to keep the worm reducer in optimal condition.

worm gearbox

Can a Worm Gearbox Provide High Torque Output?

Yes, a worm gearbox is capable of providing high torque output due to its unique design and principle of operation. Worm gears are known for their high torque multiplication capabilities, making them suitable for applications that require significant torque transfer.

The torque output of a worm gearbox is influenced by several factors:

  • Lead Angle: The lead angle of the worm affects the mechanical advantage of the gear system. A larger lead angle can result in higher torque output.
  • Worm Diameter: A larger diameter worm can offer increased torque output as it provides more contact area with the gear.
  • Gear Ratio: The gear ratio between the worm and the gear determines the torque multiplication factor. A higher gear ratio leads to higher torque output.
  • Lubrication: Proper lubrication is essential to minimize friction and ensure efficient torque transmission.
  • Material and Quality: High-quality materials and precision manufacturing contribute to the gearbox’s ability to handle high torque loads.

Due to their ability to provide high torque output in a compact form factor, worm gearboxes are commonly used in various industrial applications, including heavy machinery, construction equipment, conveyor systems, and more.

China supplier CZPT S Series Helical Worm Hollow Shaft Gear Box with Motor   planetary gearbox	China supplier CZPT S Series Helical Worm Hollow Shaft Gear Box with Motor   planetary gearbox
editor by CX 2023-10-08

China supplier Aluminium Worm Gearbox Gear Box Wheel Speed Reducer Jack Worm Planetary Helical Bevel Steering Gear Drive Nmrv Manufacturer Industrial Aluminium Worm Gearbox with Great quality

Product Description

Aluminium Worm Gearbox Gear Box Wheel Speed Reducer Jack Worm Planetary Helical Bevel Steering Gear Drive Nmrv Manufacturer Industrial Aluminium Worm gearbox

     Application of Aluminium Worm Gearbox

Aluminium worm gearboxes are used in a wide variety of applications, including:

  • Conveyors
  • Wind turbines
  • Elevators
  • Machine tools
  • Mining equipment
  • Construction equipment
  • Agriculture equipment
  • Robotics
  • Automotive
  • Aerospace

Aluminium worm gearboxes are a type of gearbox that uses a worm gear to transmit power. Worm gears are characterized by their high efficiency and low noise. Aluminium worm gearboxes are typically used in applications where weight and cost are important considerations.

Here are some of the advantages of using aluminium worm gearboxes:

  • Lightweight: Aluminium worm gearboxes are lightweight, which makes them ideal for applications where weight is a concern.
  • Cost-effective: Aluminium worm gearboxes are cost-effective, which makes them a good choice for budget-minded applications.
  • High efficiency: Aluminium worm gearboxes are highly efficient, which can save energy and money.
  • Low noise: Aluminium worm gearboxes are low-noise, which can make them a good choice for applications where noise is a concern.

Overall, aluminium worm gearboxes are a versatile and beneficial component that can be used in a wide variety of applications. They can help to improve efficiency, cost-effectiveness, and noise reduction.

Here are some additional details about the applications of aluminium worm gearboxes:

  • Conveyors: Aluminium worm gearboxes are used in conveyors to transmit power from the motor to the conveyor belt. This allows for the efficient transportation of materials.
  • Wind turbines: Aluminium worm gearboxes are used in wind turbines to transmit power from the turbine blades to the generator. This allows for the efficient generation of electricity.
  • Elevators: Aluminium worm gearboxes are used in elevators to transmit power from the motor to the elevator car. This allows for the safe and efficient transportation of people and goods.
  • Machine tools: Aluminium worm gearboxes are used in machine tools to transmit power from the motor to the cutting tool. This allows for the precise machining of materials.
  • Mining equipment: Aluminium worm gearboxes are used in mining equipment to transmit power from the motor to the mining tools. This allows for the efficient extraction of minerals.
  • Construction equipment: Aluminium worm gearboxes are used in construction equipment to transmit power from the motor to the construction tools. This allows for the efficient construction of buildings and infrastructure.
  • Agriculture equipment: Aluminium worm gearboxes are used in agriculture equipment to transmit power from the motor to the agricultural tools. This allows for the efficient cultivation of crops and livestock.
  • Robotics: Aluminium worm gearboxes are used in robotics to transmit power from the motor to the robotic arm. This allows for the precise movement of the robotic arm.
  • Automotive: Aluminium worm gearboxes are used in automotive applications to transmit power from the engine to the wheels. This allows for the efficient movement of the vehicle.
  • Aerospace: Aluminium worm gearboxes are used in aerospace applications to transmit power from the engine to the aircraft’s control surfaces. This allows for the precise control of the aircraft.

Aluminium worm gearboxes are a critical component in many machines and systems. They allow for the efficient and reliable transmission of power, which is essential for many applications.

      

Is it Possible to Reverse the Direction of a Worm Gearbox?

Yes, it is possible to reverse the direction of a worm ge

How to Calculate the Efficiency of a Worm Gearbox

Calculating the efficiency of a worm gearbox involves determining the ratio of output power to input power. Efficiency is a measure of how well the gearbox converts input power into useful output power without losses. Here’s how to calculate it:

  • Step 1: Measure Input Power: Measure the input power (Pin) using a power meter or other suitable measuring equipment.
  • Step 2: Measure Output Power: Measure the output power (Pout) that the gearbox is delivering to the load.
  • Step 3: Calculate Efficiency: Calculate the efficiency (η) using the formula: Efficiency (η) = (Output Power / Input Power) * 100%

For example, if the input power is 1000 watts and the output power is 850 watts, the efficiency would be (850 / 1000) * 100% = 85%.

It’s important to note that efficiencies can vary based on factors such as gear design, lubrication, wear, and load conditions. The calculated efficiency provides insight into how effectively the gearbox is converting power, but it’s always a good practice to refer to manufacturer specifications for gearbox efficiency ratings.

arbox by changing the orientation of either the input or output shaft. However, reversing the direction of a worm gearbox can have some implications that need to be considered:

  • Efficiency: Reversing the direction of a worm gearbox can potentially affect its efficiency. Worm gearboxes are typically more efficient in one direction of rotation due to the design of the worm and worm wheel.
  • Backlash: Reversing the direction of rotation might lead to increased backlash or play in the gearbox, which can impact precision and smooth operation.
  • Lubrication: Depending on the gearbox’s design, reversing the direction could affect lubrication distribution and lead to uneven wear on the gear teeth.
  • Load: Reversing the direction might also impact the gearbox’s load-carrying capacity, especially if it’s designed for predominantly one-way operation.
  • Noise and Vibration: Direction reversal can sometimes result in increased noise and vibration due to changes in gear engagement and meshing behavior.

If you need to reverse the direction of a worm gearbox, it’s advisable to consult the gearbox manufacturer’s guidelines and recommendations. They can provide insights into whether the specific gearbox model is suitable for reversible operation and any precautions or adjustments needed to ensure proper functioning.

Application: Motor, Electric Cars, Motorcycle, Machinery, Marine, Agricultural Machinery, Car
Function: Distribution Power, Clutch, Change Drive Torque, Change Drive Direction, Speed Changing, Speed Reduction, Speed Increase
Layout: Coaxial
Hardness: Hardened Tooth Surface
Installation: Horizontal Type
Step: Steel
Samples:
US$ 9999/Piece
1 Piece(Min.Order)

|
Request Sample

Preventing Backlash in a Worm Gearbox

Backlash in a worm gearbox can lead to reduced accuracy, positioning errors, and decreased overall efficiency. Here are steps to prevent or minimize backlash:

  • High-Quality Components: Use high-quality worm gears and worm wheels with tight manufacturing tolerances. Precision components will help reduce backlash.
  • Proper Meshing: Ensure the worm gear and worm wheel are properly aligned and meshed. Improper meshing can lead to increased backlash.
  • Preload: Applying a small amount of preload to the worm gear can help reduce backlash. However, excessive preload can increase friction and wear.
  • Anti-Backlash Mechanisms: Consider using anti-backlash mechanisms, such as spring-loaded systems or adjustable shims, to compensate for any inherent backlash.
  • Lubrication: Proper lubrication can reduce friction and play a role in minimizing backlash. Use a lubricant that provides good film strength and reduces wear.
  • Maintenance: Regularly inspect and maintain the gearbox to identify and address any changes in backlash over time.

It’s important to strike a balance between reducing backlash and maintaining smooth operation. Consulting with gearbox experts and following manufacturer guidelines will help you optimize your worm gearbox’s performance while minimizing backlash.

China supplier Aluminium Worm Gearbox Gear Box Wheel Speed Reducer Jack Worm Planetary Helical Bevel Steering Gear Drive Nmrv Manufacturer Industrial Aluminium Worm Gearbox   with Great quality China supplier Aluminium Worm Gearbox Gear Box Wheel Speed Reducer Jack Worm Planetary Helical Bevel Steering Gear Drive Nmrv Manufacturer Industrial Aluminium Worm Gearbox   with Great quality
editor by CX 2023-08-29

China Hunphrey Gear Box Planetary Reducer Worm Gearbox for Cutting Machine with high quality

Item Description

Model Information
AD90-H-007-N-LS(Advert-H90-L1-22)  
VRSF78-30C-400W RATIO thirty:1
VRSF78-25C-400W RATIO twenty five:one
AF90-L2(AF90-571-N) AF90-571-N


/ Piece
|
1 Piece

(Min. Order)

###

Condition: New
Certification: Other
Standard: Other
Customized: Customized
Material: Metal
Application: Metal Cutting Machine, Metal Engraving Machinery

###

Samples:
US$ 144/Piece
1 Piece(Min.Order)

|
Request Sample

###

Customization:
Available

|


###

Model Details
AD90-H-007-N-LS(AD-H90-L1-22)  
VRSF78-30C-400W RATIO 30:1
VRSF78-25C-400W RATIO 25:1
AF90-L2(AF90-025-N) AF90-025-N

/ Piece
|
1 Piece

(Min. Order)

###

Condition: New
Certification: Other
Standard: Other
Customized: Customized
Material: Metal
Application: Metal Cutting Machine, Metal Engraving Machinery

###

Samples:
US$ 144/Piece
1 Piece(Min.Order)

|
Request Sample

###

Customization:
Available

|


###

Model Details
AD90-H-007-N-LS(AD-H90-L1-22)  
VRSF78-30C-400W RATIO 30:1
VRSF78-25C-400W RATIO 25:1
AF90-L2(AF90-025-N) AF90-025-N

Worm gear reducer gearbox

A worm gear reducer gearbox is a gear reducer gearbox that uses a worm gear train to reduce the required force. Unlike traditional gear reducer gearboxes, these units are small and require low horsepower ratings. This reduces their efficiency, but their low cost and compact design help make up for this shortcoming. However, these gear reducer gearboxes have some drawbacks, including their tendency to lock up when reversing.
worm reducer

high efficiency

High-efficiency worm reducer gearboxes are ideal for applications where high performance, repeatability, and accuracy are critical. It consists of an input hypoid gear and an output hypoid bevel gear. The input worm rotates perpendicular to the output worm, so for every revolution of the input worm, the output gear makes one revolution. This arrangement reduces friction (another source of energy loss) in a high-efficiency worm gear to at least two arc minutes.
Compared with worm gear reducer gearboxes, hypoid gearmotors offer several advantages, including lower operating costs and higher efficiency. For example, hypoid gear motors can transmit more torque even at high reduction ratios. Also, they are more efficient than worm gear reducer gearboxes, which means they can produce the same output with a smaller motor.
In recent years, the efficiency of worm gear reducer gearboxes has been dramatically improved. Manufacturers have made great strides in materials, design, and manufacturing. New designs, including dual-enveloping worm gear reducer gearboxes, increase efficiency by 3 to 8 percent. These improvements were made possible through countless hours of testing and development. Worm gear reducer gearboxes also offer lower initial costs and higher overload capability than competing systems.
Worm gear reducer gearboxes are popular because they provide maximum reduction in a small package. Their compact size makes them ideal for low to medium-horsepower applications and they are reticent. They also offer higher torque output and better shock load tolerance. Finally, they are an economical option to reduce the device’s power requirements.

low noise

Low-noise worm gear reducer gearboxes are designed to reduce noise in industrial applications. This type of reducer gearbox uses fewer bearings and can work in various mounting positions. Typically, a worm reducer gearbox is a single-stage unit with only one shaft and one gear. Since there is only one gear, the noise level of the worm gear reducer gearbox will be lower than other types.
A worm gear reducer gearbox can be integrated into the electric power steering system to reduce noise. Worm reducer gearboxes can be made and from many different materials. The following three-stage process will explain the components of a low-noise worm reducer gearbox.
Worm gear reducer gearboxes can be mounted at a 90-degree angle to the input worm shaft and are available with various types of hollow or solid output shafts. These reducer gearboxes are especially beneficial for applications where noise reduction is essential. They also have fewer parts and are smaller than other types of reducer gearboxes, making them easier to install.
Worm gear reducer gearboxes are available from various manufacturers. Due to their widespread availability, gear manufacturers maintain extensive inventories of these reducer gearboxes. The worm gear ratio is standard, and the size of the worm gear reducer gearbox is universal. Also, worm gear reducer gearboxes do not need to be sized for a specific purpose, unlike other load interruptions.
worm reducer

pocket

A worm gear reducer gearbox is a transmission mechanism with a compact structure, large transmission ratio, and self-locking function under certain conditions. The worm gear reducer gearbox series products are designed with American technology and have the characteristics of stable transmission, strong bearing capacity, low noise, and compact structure. In addition, these products can provide a wide range of power supplies. However, these worm reducer gearboxes are prone to leaks, usually caused by design flaws.
Worm gear reducer gearboxes are available in single-stage and double-stage. The first type consists of an oil tank that houses the worm gear and bearings. The second type uses a worm gear with a sleeve for the first worm gear.
When choosing a gear reducer gearbox, it is essential to choose a high-quality unit. Improper gear selection can cause rapid wear of the worm gear. While worm gear reducer gearboxes are generally durable, their degree of wear depends on the selection and operating conditions. For example, overuse, improper assembly, or working in extreme conditions can lead to rapid wear.
Worm reducer gearboxes reduce speed and torque. Worm gears can be used to reduce the speed of rotating machines or inertial systems. Worm gears are a type of bevel gear, and their meshing surfaces have great sliding force. Because of this, worm gears can carry more weight than spur gears. They are also harder to manufacture. However, the high-quality design of the worm gear makes it an excellent choice for applications requiring high torque and high-speed rotation.
Worm gears can be manufactured using three types of gears. For large reduction ratios, the input and output gears are irreversible. However, the worm reducer gearbox can be constructed with multiple helices. The multi-start worm drive also minimizes braking effects.

Self-locking function

The worm reducer gearbox is self-locking to prevent the load from being driven back to the ground. The self-locking function is achieved by a worm that meshes with the rack and pinion. When the load reaches the highest position, the reverse signal is disabled. The non-locking subsystem back-drives the load to its original position, while the self-locking subsystem remains in its uppermost position.
The self-locking function of the worm reducer gearbox is a valuable mechanical feature. It helps prevent backing and saves the cost of the braking system. Additionally, self-locking worm gears can be used to lift and hold loads.
The self-locking worm gear reducer gearbox prevents the drive shaft from driving backward. It works with the axial force of the worm gear. A worm reducer gearbox with a self-locking function is a very efficient machine tool.
Worm gear reducer gearboxes can be made with two or four teeth. Single-ended worms have a single-tooth design, while double-ended worms have two threads on the cylindrical gear. A multi-boot worm can have up to four boots. Worm reducer gearboxes can use a variety of gear ratios, but the main advantage is their compact design. It has a larger load capacity than a cross-shaft helical gear mechanism.
The self-locking function of the worm reducer gearbox can also be used for gear sets that are not necessarily parallel to the shaft. It also prevents backward travel and allows forward travel. The self-locking function is achieved by a ratchet cam arranged around the gear member. It also enables selective coupling and decoupling between gear members.
worm reducer

high gear ratio

Worm reducer gearboxes are an easy and inexpensive way to increase gear ratios. These units consist of two worm gears – an input worm gear and an output worm gear. The input worm rotates perpendicular to the output worm gear, which also rotates perpendicular to itself. For example, a 5:1 worm gearbox requires 5 revolutions per worm gear, while a 60:1 worm gearbox requires 60 revolutions. However, this arrangement is prone to inefficiency since the worm gear experiences only sliding friction, not rolling friction.
High-reduction applications require many input revolutions to rotate the output gear. Conversely, low input speed applications suffer from the same friction issues, albeit with a different amount of friction. Worms that spin at low speeds require more energy to maintain their movement. Worm reducer gearboxes can be used in many types of systems, but only some are suitable for high-speed applications.
Worm gears are challenging to produce, but the envelope design is the best choice for applications requiring high precision, high efficiency, and minimal backlash. Envelope design involves modifying gear teeth and worm threads to improve surface contact. However, this type of worm gear is more expensive to manufacture.
Worm gear motors have lower initial meshing ratios than hypoid gear motors, which allows the use of smaller motors. So a 1 hp worm motor can achieve the same output as a 1/2 hp motor. A study by Agknx compared two different types of geared motors, comparing their power, torque, and gear ratio. The results show that the 1/2 HP hypoid gear motor is more efficient than the worm gear motor despite the same output.
Another advantage of the worm gear reducer gearbox is the low initial cost and high efficiency. It offers high ratios and high torque in a small package, making it ideal for low to medium-horsepower applications. Worm gear reducer gearboxes are also more shock-resistant.
China Hunphrey Gear Box Planetary Reducer Worm Gearbox for Cutting Machine     with high quality China Hunphrey Gear Box Planetary Reducer Worm Gearbox for Cutting Machine     with high quality
editor by CX 2023-04-17